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Temperature of solution in “constant temperature” bath
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Sample and parent distribution

We assume that our histogram of measured values is governed by an
underlying probability distribution called the parent distribution.

parent distribution

In the limit of an infinite number of measurements our histogram or
sample distribution becomes the parent distribution.
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Sample and parent distribution
Histograms (sample distributions) constructed from the same parent distribution
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Probability density

Our main objective in making a measurement is to learn the underlying
parent distribution, p(x), that predicts the spread in the measured values.

The parent distribution, p(x), is also called a probability density. A parent
distribution is always normalized so the area under the distribution is unity,∫

all x
p(x) dx = 1.
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Confidence Limits

The probability that a measured value lies between x− and x+ can be
calculated from the parent distribution according to

P(x−, x+) =

∫ x+

x−

p(x) dx .

The integral limits x− and x+ are called the confidence limits associated
with a given probability P(x−, x+).
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Moments of a distribution

When you report confidence limits you lose information concerning the
shape of the parent distribution.

There are a few parameters that by convention are often used to describe
the parent distribution in part, or sometimes completely.

mean : the first moment about the origin

variance : the second moment about the mean

skewness : the third moment about the mean

kurtosis : the fourth moment about the mean
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The mean

The Mean describes the average value of the distribution. Given the
parent distribution, p(x), the mean is calculated according to

µ =

∫
all x

x p(x) dx .

From a series of measurements the mean is given by

µ = lim
N→∞

1

N

∑
i

xi ,

where N corresponds to the number of measurements xi .

Practically, we cannot make an infinite measurements so the experimental
mean, x , is defined as

x =
1

N

∑
i

xi .
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The mean, the median, and the mode.
When distribution is not symmetric about the mean
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two other parameters used are:

median: cuts the area of the parent distribution in half,∫ xmedian

−∞
p(x) dx =

1

2
.

mode: most probable value,

dp(xmode)

dx
= 0, and

d 2p(xmode)

dx2
< 0.
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The Variance.
Variance characterizes the width of the distribution and is given by

σ2 =

∫
all x

(x − µ)2p(x)dx .

From a series of measurements the variance is obtained through:

σ2 = lim
N→∞

1

N

N∑
i

(xi − µ)2.

The experimental variance is defined as:

s2 =
1

N − 1

N∑
i

(xi − x)2,

where s2 is the variance of the experimental parent distribution.
σ and s are the standard deviation of the parent distribution and
experimental parent distribution, respectively.
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The Skewness.

The Skewness characterizes the asymmetry of a distribution and is given by

skewness =
1

N

N∑
i=1

(
xi − µ

σ

)3

.

Skewness is dimensionless. A distribution with positive skewness has an
asymmetric tail extending out more towards +x , while a negative skewness
extends out more toward −x .
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Symmetric distributions have zero skewness (e.g., Gaussian).
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The Kurtosis.
The Kurtosis measures the relative peakedness or flatness of a distribution
relative to a normal (i.e., Gaussian) distribution. It is defined as:

kurtosis =

[
1

N

N∑
i=1

(
xi − µ

σ

)4
]
− 3.

Subtracting 3 makes the kurtosis zero for a Gaussian distribution. A
positive kurtosis is called leptokurtic, a negative kurtosis is called
platykurtic, and in between is called mesokurtic.
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Probability

Probability =
Number of outcomes that are successful (winning)

Total number of outcomes (winning and losing)

The difficulty lies in counting. In order to count the number of outcomes
we appeal to combinatorics.
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Permutations

Definition

Permutation An arrangement of outcomes in which the order is important.

Example

Consider a club with 5 members, Joe, Kathy, Sally, Bob, and Pat. In how
many ways can we elect a president and a secretary?

One solution

One solution is to make a tree, such as the one below:

Joe

Joe, Kathy
Joe, Sally
Joe, Bob
Joe, Pat

Kathy

Kathy, Joe
Kathy, Sally
Kathy, Bob
Kathy, Pat

Pat

Pat, Joe
Pat, Kathy
Pat, Sally
Pat, Bob

Sally

Sally, Joe
Sally, Kathy
Sally, Bob
Sally, Pat

Bob

Bob, Joe
Bob, Kathy
Bob, Sally
Bob, Pat

Using such a tree diagram we can count that there are a total of 20
possible ways to elect a president and a secretary in a club with 5
members.

Another solution

Think of two boxes, one for president, and one for secretary. If you pick
the president first and secretary second then you’ll have five choices for
president 5 president, and four choices for secretary 4 secretary. The total
number of ways is the product of the two numbers

5 president · 4 secretary = 20.
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Permutations

Example

What if we wanted to elect a president, secretary, and treasurer?

Solution

In this case a tree would be a lot of work. Using the boxes approach we
would have 5 · 4 · 3 = 60 possibilities.

The number of ways r objects can be selected from n objects is

nPr = n · (n − 1) · (n − 2) · · · (n − r + 1),

or more generally written as

nPr =
n!

(n − r)!
.
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Combinations

Definition

Combination An arrangement of outcomes in which the order is not
important. The total number of combinations of n objects taken r at a
time is

nCr =
nPr

r !
, or

n!

r !(n − r)!
.

Example

Consider again our club with 5 members. In how many ways can we form
a three member committee?

Solution

Here order is not important. That is, {Joe, Kathy, Sally} = {Kathy, Joe,
Sally} = {Kathy, Sally, Joe}. All arrangements are equivalent.

5C3 =
5!

3!2!
= 10 possible 3 member committees starting with 5 members
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Combinations

Definition

Combination An arrangement of outcomes in which the order is not
important. The total number of combinations of n objects taken r at a
time is

nCr =
nPr

r !
, or

n!

r !(n − r)!
.

nCr is called the binomial coefficient, and is also often written as

(
n
r

)
.(

n
r

)
=

n!

r !(n − r)!
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Calculating probabilities

Probability =
Number of successful outcomes

Total number of outcomes
.

Example

The names of 5 members are thrown in a hat and 2 are drawn with the 1st
becoming president and the 2nd becoming secretary. What is the
probability that Pat becomes president and Kathy secretary?

Solution

There is one successful outcome: Pat as president and Kathy as secretary,

Number of successful outcomes = 1.

Total outcomes is the number of permutations of drawing 2 out of a 5

Total number of outcomes = 5P2 = 20.

so P = 1/20 = 0.05 or 5%.
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Probabilities involving independent events with same
probability

Example

If you roll a die ten times, what is the probability that only 3 rolls will
come up sixes?

What is the probability of rolling only 3 sixes? e.g., one way it could
happen is

X ,X , 6,X ,X ,X , 6, 6,X ,X

where X is a roll that was not 6.
The probability of this particular sequence of independent events is

p =
5

6
· 5
6
· 1
6
· 5
6
· 5
6
· 5
6
· 1
6
· 1
6
· 5
6
· 5
6
=

(
5

6

)7(1

6

)3

= 1.292044× 10−3

How many ways can we roll only 3 sixes?
X , X , 6 , X , X , X , 6 , 6 , X , X
X , X , X , 6 , X , X , 6 , 6 , X , X
X , X , X , 6 , X , 6 , X , 6 , X , X

...

The total number of possibilities (i.e., combinations) is 10C3 or

(
10
3

)
.
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Probabilities involving independent events with same
probability

Example

If you roll a die ten times, what is the probability that only 3 rolls will
come up sixes?

Assuming that all possible combinations are equally probable, then to
obtain the overall probability that I will roll only 3 sixes we simply multiply
our calculated probability above by the number of combinations that give
only 3 sixes. That is,

P(3 sixes out of 10 rolls) = 10C3

(
5

6

)7(1

6

)3

= 120 · 1.292044× 10−3 = 0.15504536,

or roughly a 1 in 6.5 chance.
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Binomial Distribution

We can generalize this reasoning to the case where the probability of
success is p (instead of 1/6), the probability of failure is (1− p) (instead
of 5/6), the number of trials is n (instead of 10), and the number of
successes is r (instead of 3). That is,

P(r , n, p) =

(
n
r

)
pr (1− p)n−r

This distribution of probabilities, for r = 0, 1, 2, . . . , n, is called the
binomial distribution.
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Binomial Distribution
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The binomial distribution. (a) A symmetric case where p = 1/2 and
n = 10. (b) A asymmetric case where p = 1/6 and n = 10.
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Binomial Distribution

The mean and variance of a discrete distribution is given by

µr =
rmax∑
r=0

rP(r), and σ2
r =

rmax∑
r=0

(r − µr )
2P(r).

The mean of the binomial distribution to be

µ =
n∑

r=0

r

(
n
r

)
pr (1− p)n−r = np,

and the variance of the binomial distribution to be

σ2 =
n∑

r=0

[
(r − µ)2

(
n
r

)
pr (1− p)n−r

]
= np(1− p).
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Poisson Distribution
In the limit that n → ∞ and p → 0 such that np → a finite number the
binomial distribution becomes the Poisson Distribution given by

PPoisson(r , n, p) =
(np)r

r !
e−np.

This distribution often describes the parent distribution for observing
independent random events that are occurring at a constant rate, such as
photon counting experiments.
The mean of the Poisson distribution is

µ =
∞∑
r=0

[
r
(np)r

r !
e−np

]
= np.

and the variance of the Poisson distribution is

σ2 =
∞∑
r=0

[
(r − np)2

(np)r

r !
e−np

]
= np.
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Gaussian Distribution
In the limit of large n when p is not close to zero we can use the Gaussian
distribution as an approximation for the binomial. That is,

PGaussian(r , n, p) =
1√

2πnp(1− p)
exp

{
−1

2

(r − np)2

np(1− p)

}
.

The mean of the Gaussian distribution is

µ =
∞∑
r=0

[
r√

2πnp(1− p)
exp

{
−1

2

(r − np)2

np(1− p)

}]
= np.

and the variance of the Gaussian distribution is

σ2 =
∞∑
r=0

[
(r − np)2√
2πnp(1− p)

exp

{
−1

2

(r − np)2

np(1− p)

}]
= np(1− p).

Making the substitutions for µ = np and σ2 = np(1− p) we can rewrite
the Gaussian distribution
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Gaussian Distribution in the continuous variable limit

Making the substitutions for µ = np and σ2 = np(1− p) we can rewrite
the Gaussian distribution in the form

PGaussian(r , µ;σ) =
1

σ
√
2π

exp

{
−1

2

(
r − µ

σ

)2
}
.

Replacing the integer r with a continuous parameter x and get

pGaussian(x , µ;σ) =
1

σ
√
2π

exp

{
−1

2

(
x − µ

σ

)2
}
.
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Gaussian Distribution
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